hub

CELLxGENE: scRNA-seq

CZ CELLxGENE hosts the globally largest standardized collection of scRNA-seq datasets.

LaminDB makes it easy to query the CELLxGENE data and integrate it with in-house data of any kind (omics, phenotypes, pdfs, notebooks, ML models, …).

You can use the CELLxGENE data in three ways:

  1. In the current guide, you’ll see how to query metadata and data based on AnnData objects.

  2. If you want to use these in your own LaminDB instance, see the transfer guide.

  3. If you’d like to leverage the TileDB-SOMA API for the data subset of CELLxGENE Census, see the Census guide.

If you are interested in building similar data assets in-house:

  1. See the scRNA guide for how to create a growing versioned queryable scRNA-seq dataset.

  2. See the Annotate for validating, curating and registering your own AnnData objects.

  3. Reach out if you are interested in a full zero-copy clone of laminlabs/cellxgene to accelerate building your in-house LaminDB instances.

Setup

Load the public LaminDB instance that mirrors cellxgene on the CLI:

!lamin load laminlabs/cellxgene
💡 connected lamindb: laminlabs/cellxgene
import lamindb as ln
import bionty as bt
💡 connected lamindb: laminlabs/cellxgene
❗ Full backed capabilities are not available for this version of anndata, please install anndata>=0.9.1.

Query & understand metadata

Auto-complete metadata

You can create look-up objects for any registry in LaminDB, including basic biological entities and things like users or storage locations.

Let’s use auto-complete to look up cell types:

Show me a screenshot
cell_types = bt.CellType.lookup()
cell_types.effector_t_cell
CellType(updated_at=2023-11-28 22:30:57 UTC, uid='3nfZTVV4', name='effector T cell', ontology_id='CL:0000911', synonyms='effector T-cell|effector T-lymphocyte|effector T lymphocyte', description='A Differentiated T Cell With Ability To Traffic To Peripheral Tissues And Is Capable Of Mounting A Specific Immune Response.', created_by_id=1, public_source_id=48)

You can also arbitrarily chain filters and create lookups from them:

organisms = bt.Organism.lookup()
experimental_factors = bt.ExperimentalFactor.lookup()  # labels for experimental factors
tissues = bt.Tissue.lookup()  # tissue labels
suspension_types = ln.ULabel.filter(name="is_suspension_type").one().children.lookup()  # suspension types

Search & filter metadata

We can use search & filters for metadata:

bt.CellType.search("effector T cell")
Hide code cell output
<QuerySet [CellType(updated_at=2023-11-28 22:27:55 UTC, uid='6JD5JCZC', name='CD8-positive, alpha-beta cytokine secreting effector T cell', ontology_id='CL:0000908', synonyms='CD8-positive, alpha-beta cytokine secreting effector T-cell|CD8-positive, alpha-beta cytokine secreting effector T lymphocyte|CD8-positive, alpha-beta cytokine secreting effector T-lymphocyte', description='A Cd8-Positive, Alpha-Beta T Cell With The Phenotype Cd69-Positive, Cd62L-Negative, Cd127-Negative, And Cd25-Positive, That Secretes Cytokines.', created_by_id=1, public_source_id=48), CellType(updated_at=2023-11-28 22:27:55 UTC, uid='69TEBGqb', name='exhausted T cell', ontology_id='CL:0011025', synonyms='Tex cell|An effector T cell that displays impaired effector functions (e.g., rapid production of effector cytokines, cytotoxicity) and has limited proliferative potential.', created_by_id=1, public_source_id=48), CellType(updated_at=2023-11-28 22:27:55 UTC, uid='43cBCa7s', name='helper T cell', ontology_id='CL:0000912', synonyms='helper T-lymphocyte|T-helper cell|helper T lymphocyte|helper T-cell', description='A Effector T Cell That Provides Help In The Form Of Secreted Cytokines To Other Immune Cells.', created_by_id=1, public_source_id=48), CellType(updated_at=2023-11-28 22:27:55 UTC, uid='1oa5G2Mq', name='memory T cell', ontology_id='CL:0000813', synonyms='memory T-cell|memory T lymphocyte|memory T-lymphocyte', description='A Long-Lived, Antigen-Experienced T Cell That Has Acquired A Memory Phenotype Including Distinct Surface Markers And The Ability To Differentiate Into An Effector T Cell Upon Antigen Reexposure.', created_by_id=1, public_source_id=48), CellType(updated_at=2023-11-28 22:30:57 UTC, uid='3nfZTVV4', name='effector T cell', ontology_id='CL:0000911', synonyms='effector T-cell|effector T-lymphocyte|effector T lymphocyte', description='A Differentiated T Cell With Ability To Traffic To Peripheral Tissues And Is Capable Of Mounting A Specific Immune Response.', created_by_id=1, public_source_id=48)]>
bt.CellType.search("CD8-positive cytokine effector T cell")
Hide code cell output
<QuerySet []>

And use a uid to filter exactly one metadata record:

effector_t_cell = bt.CellType.filter(uid="3nfZTVV4").one()
effector_t_cell
CellType(updated_at=2023-11-28 22:30:57 UTC, uid='3nfZTVV4', name='effector T cell', ontology_id='CL:0000911', synonyms='effector T-cell|effector T-lymphocyte|effector T lymphocyte', description='A Differentiated T Cell With Ability To Traffic To Peripheral Tissues And Is Capable Of Mounting A Specific Immune Response.', created_by_id=1, public_source_id=48)

Understand ontologies

View the related ontology terms:

effector_t_cell.view_parents(distance=2, with_children=True)
_images/6cdfc2f61da5a14e92b8512c8b1af5865ee670a550a55ae2659acf11ebca5fbc.svg

Or access them programmatically:

effector_t_cell.children.df()
created_at created_by_id run_id updated_at uid name ontology_id abbr synonyms description public_source_id
id
931 2023-11-28 22:27:55.565976+00:00 1 None 2023-11-28 22:27:55.565981+00:00 2VQirdSp effector CD8-positive, alpha-beta T cell CL:0001050 None effector CD8-positive, alpha-beta T lymphocyte... A Cd8-Positive, Alpha-Beta T Cell With The Phe... 48
1088 2023-11-28 22:27:55.569828+00:00 1 None 2023-11-28 22:27:55.569832+00:00 490Xhb24 effector CD4-positive, alpha-beta T cell CL:0001044 None effector CD4-positive, alpha-beta T lymphocyte... A Cd4-Positive, Alpha-Beta T Cell With The Phe... 48
1229 2023-11-28 22:27:55.572880+00:00 1 None 2023-11-28 22:27:55.572884+00:00 69TEBGqb exhausted T cell CL:0011025 None Tex cell|An effector T cell that displays impa... None 48
1309 2023-11-28 22:27:55.575440+00:00 1 None 2023-11-28 22:27:55.575444+00:00 5s4gCMdn cytotoxic T cell CL:0000910 None cytotoxic T lymphocyte|cytotoxic T-lymphocyte|... A Mature T Cell That Differentiated And Acquir... 48
1331 2023-11-28 22:27:55.575949+00:00 1 None 2023-11-28 22:27:55.575955+00:00 43cBCa7s helper T cell CL:0000912 None helper T-lymphocyte|T-helper cell|helper T lym... A Effector T Cell That Provides Help In The Fo... 48

Query artifacts

Unlike in the SOMA guide, here, we’ll query sets of .h5ad files, which correspond to AnnData objects.

To access them, we query the Collection record that links the latest LTS set of .h5ad artifacts:

collection = ln.Collection.filter(name="cellxgene-census", version="2023-12-15").one()
collection
Collection(version='2023-12-15', updated_at=2024-01-30 09:09:49 UTC, uid='dMyEX3NTfKOEYXyMu591', name='cellxgene-census', hash='0NB32iVKG5ttaW5XILvG', visibility=1, created_by_id=1, transform_id=19, run_id=24)

You can get all linked artifacts as a dataframe - there are >1000 h5ad files in cellxgene-census version 2023-12-15.

collection.artifacts.count()
1113
collection.artifacts.df().head()  # not tracking run & transform because read-only instance
Hide code cell output
version created_at created_by_id updated_at uid storage_id key suffix accessor description size hash hash_type n_objects n_observations transform_id run_id visibility key_is_virtual
id
2825 2023-12-15 2024-01-11 09:13:25.387366+00:00 1 2024-01-24 07:18:54.197599+00:00 OoktqBIu8jCoGOJlaQPo 2 cell-census/2023-12-15/h5ads/fc0ceb80-d2d9-47c... .h5ad AnnData Sst Chodl - DLPFC: Seattle Alzheimer's Disease... 73375840 DqV7FraZIIP_l2DJuvHk_g-9 md5-n None 1877 16 22 1 False
2031 2023-12-15 2024-01-11 09:13:23.820851+00:00 1 2024-01-24 07:19:02.027481+00:00 n33nFE2kXSNzNhIAtS3S 2 cell-census/2023-12-15/h5ads/44c83972-e5d2-485... .h5ad AnnData L5 IT - DLPFC: Seattle Alzheimer's Disease Atl... 4605202922 ztuPyGXWH_OyCq1OyPlNkw-549 md5-n None 104106 16 22 1 False
1813 2023-12-15 2024-01-11 09:13:23.307694+00:00 1 2024-01-24 07:19:04.190720+00:00 mtoOxeGG0Rg3NPH1AlwD 2 cell-census/2023-12-15/h5ads/100c6145-7b0e-4ba... .h5ad AnnData Microglia-PVM - DLPFC: Seattle Alzheimer's Dis... 634716733 -B96CrmiOANuzE3xU78WsQ-76 md5-n None 42486 16 22 1 False
1804 2023-12-15 2024-01-11 09:13:23.282158+00:00 1 2024-01-24 07:19:04.646675+00:00 V0tqrgE1z1NY2eUUKKQE 2 cell-census/2023-12-15/h5ads/0ed60482-a34f-426... .h5ad AnnData Lamp5 - DLPFC: Seattle Alzheimer's Disease Atl... 1580667477 xRTDQGA4iOC4r8sSgz53vQ-189 md5-n None 55968 16 22 1 False
2532 2023-12-15 2024-01-11 09:13:24.792407+00:00 1 2024-01-29 07:49:54.125887+00:00 dEP0dZ8UxLgwnkLjHssX 2 cell-census/2023-12-15/h5ads/bd65a70f-b274-413... .h5ad AnnData Single-cell sequencing links multiregional imm... 1204103287 5hUwdflh_erDK-U2bEzfvw-144 md5-n None 167283 16 22 1 False

You can query across artifacts by arbitrary metadata combinations, for instance:

query = collection.artifacts.filter(
    organisms=organisms.human,
    cell_types__in=[cell_types.dendritic_cell, cell_types.neutrophil],
    tissues=tissues.kidney,
    ulabels=suspension_types.cell,
    experimental_factors=experimental_factors.ln_10x_3_v2,
)
query = query.order_by("size")  # order by size
query.df().head()  # convert to DataFrame
Hide code cell output
version created_at created_by_id updated_at uid storage_id key suffix accessor description size hash hash_type n_objects n_observations transform_id run_id visibility key_is_virtual
id
1880 2023-12-15 2024-01-11 09:13:23.448150+00:00 1 2024-01-29 07:46:33.152678+00:00 WwmBIhBNLTlRcSoBpatT 2 cell-census/2023-12-15/h5ads/20d87640-4be8-487... .h5ad AnnData Mature kidney dataset: immune 44647761 hSLF-GPhLXaC2tVIOJEdXA-6 md5-n None 7803 16 22 1 False
1880 2023-12-15 2024-01-11 09:13:23.448150+00:00 1 2024-01-29 07:46:33.152678+00:00 WwmBIhBNLTlRcSoBpatT 2 cell-census/2023-12-15/h5ads/20d87640-4be8-487... .h5ad AnnData Mature kidney dataset: immune 44647761 hSLF-GPhLXaC2tVIOJEdXA-6 md5-n None 7803 16 22 1 False
1930 2023-12-15 2024-01-11 09:13:23.544310+00:00 1 2024-01-29 07:46:37.205210+00:00 gHlQ5Muwu3G9pvFC7egT 2 cell-census/2023-12-15/h5ads/2d31c0ca-0233-41c... .h5ad AnnData Fetal kidney dataset: immune 64056560 jENeQIq0JdoHl5PyfY-sjA-8 md5-n None 6847 16 22 1 False
2405 2023-12-15 2024-01-11 09:13:24.526987+00:00 1 2024-01-29 07:49:11.905786+00:00 P4Oai3OLGAzRwoicaxCB 2 cell-census/2023-12-15/h5ads/9ea768a2-87ab-46b... .h5ad AnnData Mature kidney dataset: full 192484358 yghldeu2bOC5jtvnqZH8Og-23 md5-n None 40268 16 22 1 False
2405 2023-12-15 2024-01-11 09:13:24.526987+00:00 1 2024-01-29 07:49:11.905786+00:00 P4Oai3OLGAzRwoicaxCB 2 cell-census/2023-12-15/h5ads/9ea768a2-87ab-46b... .h5ad AnnData Mature kidney dataset: full 192484358 yghldeu2bOC5jtvnqZH8Og-23 md5-n None 40268 16 22 1 False

Query arrays

Each artifact stores an array in form of an annotated data matrix, an AnnData object.

Let’s look at the first array in the artifact query and show metadata using .describe():

artifact = query.first()
artifact.describe()
Hide code cell output
Artifact(version='2023-12-15', updated_at=2024-01-29 07:46:33 UTC, uid='WwmBIhBNLTlRcSoBpatT', key='cell-census/2023-12-15/h5ads/20d87640-4be8-487f-93d4-dce38378d00f.h5ad', suffix='.h5ad', accessor='AnnData', description='Mature kidney dataset: immune', size=44647761, hash='hSLF-GPhLXaC2tVIOJEdXA-6', hash_type='md5-n', n_observations=7803, visibility=1, key_is_virtual=False)

Provenance:
  📎 created_by: User(uid='kmvZDIX9', handle='sunnyosun', name='Sunny Sun')
  📎 storage: uid='oIYGbD74', root='s3://cellxgene-data-public', type='s3', region='us-west-2')
  📎 transform: Transform(version='0', uid='V4AGIdOJcOgj6K79', name='Census release 2023-12-15 (LTS)', key='cencus-release-2023-12-15-LTS', type='notebook')
  📎 run: Run(uid='UAAiLAi0BrLvlKnsuvP3', started_at=2024-01-29 07:27:05 UTC, is_consecutive=False)
  📎 input_of (core.Run): ['2024-01-30 09:07:36 UTC']
Features:
  var: FeatureSet(uid='MLFo2ZBXvibkOyBR9UOR', n=32922, dtype='number', registry='bionty.Gene')
    'None', 'EBF1', 'LINC02202', 'RNF145', 'LINC01932', 'UBLCP1', 'IL12B', 'LINC01845', 'LINC01847', 'ADRA1B', 'TTC1', 'PWWP2A', 'FABP6', 'FABP6-AS1', 'CCNJL', 'C1QTNF2', 'FAM200C', 'SLU7', 'PTTG1', 'MIR3142HG'
  obs: FeatureSet(uid='zAQ6WnmIMDLslhfgdIOt', name='obs metadata', n=11, dtype='category', registry='core.Feature')
    'assay', 'cell_type', 'development_stage', 'disease', 'donor_id', 'self_reported_ethnicity', 'sex', 'tissue', 'organism', 'tissue_type', 'suspension_type'
Labels:
  📎 organisms (1, bionty.Organism): 'human'
  📎 tissues (5, bionty.Tissue): 'renal medulla', 'kidney blood vessel', 'renal pelvis', 'cortex of kidney', 'kidney'
  📎 cell_types (12, bionty.CellType): 'classical monocyte', 'plasmacytoid dendritic cell', 'natural killer cell', 'dendritic cell', 'CD4-positive, alpha-beta T cell', 'mast cell', 'neutrophil', 'non-classical monocyte', 'CD8-positive, alpha-beta T cell', 'B cell'
  📎 diseases (1, bionty.Disease): 'normal'
  📎 phenotypes (2, bionty.Phenotype): 'male', 'female'
  📎 experimental_factors (1, bionty.ExperimentalFactor): '10x 3' v2'
  📎 developmental_stages (12, bionty.DevelopmentalStage): '2-year-old human stage', '4-year-old human stage', '12-year-old human stage', '44-year-old human stage', '49-year-old human stage', '53-year-old human stage', '63-year-old human stage', '64-year-old human stage', '67-year-old human stage', '70-year-old human stage'
  📎 ethnicities (1, bionty.Ethnicity): 'unknown'
  📎 ulabels (14, ULabel): 'TxK2', 'Wilms1', 'TxK4', 'TTx', 'RCC3', 'RCC1', 'VHL', 'TxK3', 'TxK1', 'Wilms3'
More ways of accessing metadata

Access just features:

artifact.features

Or get labels given a feature:

artifact.labels.get(features.tissue).df()
artifact.labels.get(features.collection).one()

If you want to query a slice of the array data, you have two options:

  1. Cache & load the entire array into memory via artifact.load() -> AnnData (caches the h5ad on disk, so that you only download once)

  2. Stream the array from the cloud using a cloud-backed accessor artifact.backed() -> AnnDataAccessor

Both options will run much faster if you run them close to the data (AWS S3 on the US West Coast, consider logging into hosted compute there).

Cache & load:

adata = artifact.load()
adata
Hide code cell output
AnnData object with n_obs × n_vars = 7803 × 32922
    obs: 'donor_id', 'donor_age', 'self_reported_ethnicity_ontology_term_id', 'organism_ontology_term_id', 'sample_uuid', 'tissue_ontology_term_id', 'development_stage_ontology_term_id', 'suspension_uuid', 'suspension_type', 'library_uuid', 'assay_ontology_term_id', 'mapped_reference_annotation', 'is_primary_data', 'cell_type_ontology_term_id', 'author_cell_type', 'disease_ontology_term_id', 'reported_diseases', 'sex_ontology_term_id', 'compartment', 'Experiment', 'Project', 'cell_type', 'assay', 'disease', 'organism', 'sex', 'tissue', 'self_reported_ethnicity', 'development_stage'
    var: 'feature_is_filtered', 'feature_name', 'feature_reference', 'feature_biotype'
    uns: 'default_embedding', 'schema_version', 'title'
    obsm: 'X_umap'

Now we have an AnnData object, which stores observation annotations matching our artifact-level query in the .obs slot, and we can re-use almost the same query on the array-level.

See the array-level query
adata_slice = adata[
    adata.obs.cell_type.isin(
        [cell_types.dendritic_cell.name, cell_types.neutrophil.name]
    )
    & (adata.obs.tissue == tissues.kidney.name)
    & (adata.obs.suspension_type == suspension_types.cell.name)
    & (adata.obs.assay == experimental_factors.ln_10x_3_v2.name)
]
adata_slice
See the artifact-level query for comparison
query = collection.artifacts.filter(
    organism=organisms.human,
    cell_types__in=[cell_types.dendritic_cell, cell_types.neutrophil],
    tissues=tissues.kidney,
    ulabels=suspension_types.cell,
    experimental_factors=experimental_factors.ln_10x_3_v2,
)

AnnData uses pandas to manage metadata and the syntax differs slightly. However, the same metadata records are used.

Stream:

adata_backed = artifact.backed()
adata_backed
Hide code cell output
AnnDataAccessor object with n_obs × n_vars = 7803 × 32922
  constructed for the AnnData object 20d87640-4be8-487f-93d4-dce38378d00f.h5ad
    obs: ['Experiment', 'Project', '_index', 'assay', 'assay_ontology_term_id', 'author_cell_type', 'cell_type', 'cell_type_ontology_term_id', 'compartment', 'development_stage', 'development_stage_ontology_term_id', 'disease', 'disease_ontology_term_id', 'donor_age', 'donor_id', 'is_primary_data', 'library_uuid', 'mapped_reference_annotation', 'organism', 'organism_ontology_term_id', 'reported_diseases', 'sample_uuid', 'self_reported_ethnicity', 'self_reported_ethnicity_ontology_term_id', 'sex', 'sex_ontology_term_id', 'suspension_type', 'suspension_uuid', 'tissue', 'tissue_ontology_term_id']
    obsm: ['X_umap']
    raw: ['X', 'var', 'varm']
    uns: ['default_embedding', 'schema_version', 'title']
    var: ['_index', 'feature_biotype', 'feature_is_filtered', 'feature_name', 'feature_reference']

We now have an AnnDataAccessor object, which behaves much like an AnnData, and the query looks the same.

See the query
adata_backed_slice = adata_backed[
    adata_backed.obs.cell_type.isin(
        [cell_types.dendritic_cell.name, cell_types.neutrophil.name]
    )
    & (adata_backed.obs.tissue == tissues.kidney.name)
    & (adata_backed.obs.suspension_type == suspension_types.cell.name)
    & (adata_backed.obs.assay == experimental_factors.ln_10x_3_v2.name)
]

adata_backed_slice.to_memory()

Train an ML model

You can directly train an ML models on the entire collection.

See Train a machine learning model on a collection.

Exploring data by collection

Alternatively,

Let’s search the collections from CELLxGENE within the 2023-12-15 release:

ln.Collection.filter(version="2023-12-15").search("immune human kidney", limit=10)
<QuerySet []>

Let’s get the record of the top hit collection:

collection = ln.Collection.filter(uid="kqiPjpzpK9H9rdtnV67f").one()

collection
Collection(version='2023-12-15', updated_at=2024-01-29 07:54:33 UTC, uid='kqiPjpzpK9H9rdtnV67f', name='Spatiotemporal immune zonation of the human kidney', description='10.1126/science.aat5031', hash='4wGcXeeqsjVdbRdU7ZuJ', reference='120e86b4-1195-48c5-845b-b98054105eec', reference_type='CELLxGENE Collection ID', visibility=1, created_by_id=1, transform_id=17, run_id=22)

We see it’s a Science paper and we could find more information using the DOI or CELLxGENE collection id.

Check different versions of this collection:

collection.versions.df()
version created_at created_by_id updated_at uid name description hash reference reference_type transform_id run_id artifact_id visibility
id
17 2023-07-25 2024-01-08 12:01:20.121086+00:00 1 2024-01-08 12:01:20.121095+00:00 kqiPjpzpK9H9rdtnHWas Spatiotemporal immune zonation of the human ki... 10.1126/science.aat5031 w_VZE7n841ktaA9FjdLh 120e86b4-1195-48c5-845b-b98054105eec CELLxGENE Collection ID NaN NaN None 1
365 2023-12-15 2024-01-11 13:41:06.531224+00:00 1 2024-01-29 07:54:33.854515+00:00 kqiPjpzpK9H9rdtnV67f Spatiotemporal immune zonation of the human ki... 10.1126/science.aat5031 4wGcXeeqsjVdbRdU7ZuJ 120e86b4-1195-48c5-845b-b98054105eec CELLxGENE Collection ID 17.0 22.0 None 1

Each collection has at least one Artifact file associated to it. Let’s get the associated artifacts:

collection.artifacts.df()
version created_at created_by_id updated_at uid storage_id key suffix accessor description size hash hash_type n_objects n_observations transform_id run_id visibility key_is_virtual
id
1778 2023-12-15 2024-01-11 09:13:23.214114+00:00 1 2024-01-29 07:46:06.497662+00:00 b2x19Eg28GGSNnXW1hAD 2 cell-census/2023-12-15/h5ads/08073b32-d389-41f... .h5ad AnnData Fetal kidney dataset: nephron 159545411 _JE59jFHDrOn0hj4i1yXSQ-20 md5-n None 10790 16 22 1 False
1880 2023-12-15 2024-01-11 09:13:23.448150+00:00 1 2024-01-29 07:46:33.152678+00:00 WwmBIhBNLTlRcSoBpatT 2 cell-census/2023-12-15/h5ads/20d87640-4be8-487... .h5ad AnnData Mature kidney dataset: immune 44647761 hSLF-GPhLXaC2tVIOJEdXA-6 md5-n None 7803 16 22 1 False
1930 2023-12-15 2024-01-11 09:13:23.544310+00:00 1 2024-01-29 07:46:37.205210+00:00 gHlQ5Muwu3G9pvFC7egT 2 cell-census/2023-12-15/h5ads/2d31c0ca-0233-41c... .h5ad AnnData Fetal kidney dataset: immune 64056560 jENeQIq0JdoHl5PyfY-sjA-8 md5-n None 6847 16 22 1 False
1944 2023-12-15 2024-01-11 09:13:23.568572+00:00 1 2024-01-29 07:46:52.173865+00:00 USUgRVwrCMquHiImhk5D 2 cell-census/2023-12-15/h5ads/2fc9c59f-3cfd-48d... .h5ad AnnData Mature kidney dataset: non PT parenchyma 39294782 3l5iNnBmPFbYfR3-THYWNQ-5 md5-n None 4620 16 22 1 False
2405 2023-12-15 2024-01-11 09:13:24.526987+00:00 1 2024-01-29 07:49:11.905786+00:00 P4Oai3OLGAzRwoicaxCB 2 cell-census/2023-12-15/h5ads/9ea768a2-87ab-46b... .h5ad AnnData Mature kidney dataset: full 192484358 yghldeu2bOC5jtvnqZH8Og-23 md5-n None 40268 16 22 1 False
2570 2023-12-15 2024-01-11 09:13:24.870820+00:00 1 2024-01-29 07:50:01.866851+00:00 6mnZ3SeQFhffr3wTdZZb 2 cell-census/2023-12-15/h5ads/c52de62a-058d-4d7... .h5ad AnnData Fetal kidney dataset: stroma 109942751 s24Q5-FNUNQPLZw9BuwOVg-14 md5-n None 8345 16 22 1 False
2652 2023-12-15 2024-01-11 09:13:25.042157+00:00 1 2024-01-29 07:50:28.610568+00:00 11HQaMeIUaOwyHoOWVvA 2 cell-census/2023-12-15/h5ads/d7dcfd8f-2ee7-438... .h5ad AnnData Fetal kidney dataset: full 341214674 2mnG5TiEpj0Wr5L19TTFRw-41 md5-n None 27197 16 22 1 False